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Abstract. We examine the ground state of a Heisenberg model with arbitrary spinS on
a one-dimensional lattice composed of diamond-shaped units. A unit includes two types of
antiferromagnetic exchange interaction which frustrate each other. The system undergoes phase
changes when the ratioλ between the exchange parameters varies. In some phases, strong
frustration leads to larger local structures orclusters of spins than a dimer. We prove for
arbitrary S that there exists a phase with four-spin cluster states, which was previously found
numerically for a special value ofλ in the S = 1/2 case. ForS = 1/2 we show that there are
three ground-state phases, and determine their boundaries.

Effects of frustration in quantum antiferromagnets are of great current interest in solid-state
physics. In a classical system, strong frustration obstructs a simple antiferromagnetic (AF)
ordering and produces another magnetic order characteristic of each system, e.g. the 120◦

structure or a spiral [1]. In a quantum system, the interplay of quantum fluctuations and
frustration makes the situation more complicated. There may appear an exotic ground state
which does not have magnetic order and has no classical analogue. A typical example is
the complete dimer state in the Majumdar–Ghosh (MG) model (see [2]).

There are two types of frustrated quantum spin system. One is a system the classical
version of which has a locally stable spin configuration in the ground state; i.e. any local
deformation for a spin configuration always raises the energy. We say that such a system
is elastic. The MG model, the model with linearly decreasing AF interactions [3, 4] and
the AF Heisenberg model on the triangular lattice are of this type. For the other type,
the classical version of a system has ground-state spin configurations which can be locally
deformed without raising the energy. Then the set of these configurations is a manifold
with dimensions proportional to the system size. We say that a system of this type isfloppy.
The AF Heisenberg models on the1 chain [5], the double chain with diagonal interaction
[6] and the Kagoḿe lattice [7] are of this type. Some other floppy spin systems are also
seen in [3].

Especially interesting are floppy systems. For example, it is argued that the Kagomé
antiferromagnet has a mysterious peak in a low-temperature part of the specific heat [7]. In
spite of quite a few theoretical studies on this system, its quantum ground state and the low-
temperature thermodynamic properties are hardly clarified. The difficulty of the problem
originates from the floppiness. In a classical floppy system, the configuration of a local set
of spins can be deformed without affecting the other part. In the corresponding quantum
system the local set may form a nearly closed state, or acluster. A part surrounded by
such clusters forms another cluster. Thus the total wave function becomes approximately
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of a direct product form. To confirm this picture, it is important to examine a simple floppy
model in which the structure of the ground state is clearly seen.

The singlet dimer is the smallest cluster. Ground states with dimer structures are possible
in both elastic and floppy systems withS = 1/2. The difference appears in their low-lying
energy spectra. An elastic quantum system has usually unique or finitely degenerate ground
states. The lowest excitation mode is expected to have an energy gap and a dispersion
both of the order of the typical exchange parameters. On the other hand, unusual situations
such as a macroscopic degeneracy of the dimer ground state [3] or dispersionless low-
energy excitations [5] occur in floppy systems. These seem to be two different quantum
manifestations of the classical floppiness.

In this paper we report exact ground states with larger clusters than dimers in a frustrated
AF chain. The system contains a parameter which regulates the strength of the frustration,
and can be either elastic or floppy according to the value of the parameter. Wave functions
with periodic cluster structures appear in the floppy regime.

Figure 1. (a) The diamond chain. The circle represents a spin with magnitudeS and the solid
(dashed) line represents exchange parameterJ (J ′). (b) The dimer–monomer (DM) state. The
unshaded oval represents a dimer (Ti = 0). There are free spins (monomers) on the sites not
enclosed by ovals. (c) The tetramer–dimer (TM) state. The shaded oval represents a triplet pair
(Ti = 1) and the closed loop including four spins represents a tetramer.

The system is described by the Hamiltonian

H =
N∑

i=1

hi (1a)

hi = J (Si + Si+1) · (T (1)
i + T (2)

i ) + J ′T (1)
i · T (2)

i (1b)

whereSi , T (1)
i and T (2)

i are spins with magnitudeS in the ith unit cell. We assume that
J is positive. The sub-Hamiltonianhi corresponds to a diamond shape and so we call the
total lattice shown in figure 1(a) simply adiamond chain.

The system was studied earlier briefly by Sutherland and Shastry as an example of the
superstability [8]. The case ofS = 1/2 andJ ′ = 2J was discussed as an example in the
context of a general method to derive spin models with complete dimer ground states [3].



Ground states with cluster structures 6407

The cases withJ ′ = ±J were studied by Longet al [9]. They found numerically the
ground state with four-site clusters forS = 1/2 andJ ′ = J .

Recently it was reported that the magnetic properties of a mixed molecular crystal of
organic mono- and di-radicals are described by the Hamiltonian (1) forS = 1/2 with
J ' 30 K andJ ′ ' −20 K [10].

We treat the whole region ofJ ′, though our main interest is in the frustrated region
where J ′ is positive. For a givenS the ratio λ ≡ J ′/J is the only parameter which
determines the properties of the system. We assume periodic boundary conditions in the
following, though most of the results do not depend on this assumption.

Before proceeding to the full quantum treatment, we examine the ground-state spin
configuration in the classical limit (S → ∞ with JS2 finite). The ground state is given by
a spin configuration which minimizes the energy of all the unit diamonds. Equation (1b) is
rewritten as

hi = J

2
{(Ti + S̃i )

2 + (λ − 1)T 2
i − S̃2

i − 2λS(S + 1)} (2)

by usingTi ≡ T (1)
i +T (2)

i andS̃i ≡ Si +Si+1. In the classical limitS(S +1) is replaced by
S2 in (2). Forλ < 1 it is seen that the energy is minimized when the following conditions
are satisfied:|Ti | = 2S, |S̃i | = 2S and |Ti + S̃i | = 0. These conditions imply thatT (1)

i

andT (2)
i , andSi andSi+1 are parallel to each other, respectively, and furtherT

(j)

i (j = 1
or 2) andSi are antiparallel to each other. So this is a ferrimagnetic state where all the
Sis (T (j)

i s) are aligned parallel (antiparallel) to an axis. The ground-state energy and the
magnetization are given by−(4−λ)JS2 andS per unit diamond, respectively. The ground
state is elastic in this region.

For λ > 1, another expression ofhi is useful, i.e.

hi = (Jλ/2){(Ti + S̃i/λ)2 − (S̃i/λ)2 − 2S(S + 1)}.
The energy minimum is realized if|S̃i | = 2S and |Ti + S̃i/λ| = 0. The former condition
leads to all theSis being parallel to an axis. The latter condition is satisfied if and only
if λ > 1, and means thatT (1)

i and T (2)
i form a triangle withS̃i/λ. They make an angle

θ = cos−1(1/λ) to the axis throughSi and may be rotated about this axis simultaneously
without raising the energy. The ground state containsN degrees of freedom of free rotations
and hence is floppy. The ground-state energy is−(λ + 2/λ)JS2 per unit diamond. The
ground state is again ferrimagnetic except for whenλ = 2 with a magnetization|2/λ − 1|S
per unit. Thus in the classical limit the diamond chain has two different ground-state phases,
the elastic one forλ < 1 and the floppy one forλ > 1.

We turn to the quantum case with generalS. Hereafter we take an energy unit ofJ = 1.
We find easily from (2) that [T 2

i , H ] = 0; i.e., for all i, T 2
i = Ti(Ti + 1) are good quantum

numbers (Ti = 0, 1, . . . , 2S). With fixed {Ti}, the original problem of 3N spins reduces to
a problem of a linear chain with 2N spins, where the (2i − 1)th site is occupied by the spin
Si and the 2ith by Ti . The energy ofJ ′-bonds (i.e. a part of the energy proportional toλ)
is determined solely by{Ti}. It should be noted that ifTi = 0 then there is no interaction
between the left-hand and the right-hand sides ofTi and the whole lattice is decoupled.

Let us first consider the eigenstates of an isolated unit diamond described byhi . In the
lowest eigenstate ofhi for a givenTi , the energy is

E1(Ti) = Ti

[
λ

2
(Ti + 1) − (2S + 1)

]
− λS(S + 1) (3)

and the total spin is 2S − Ti . Then we obtain the following.
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Lemma 1.For T > 1 and forλ > λD(T ) whereλD(T ) ≡ 2(2S + 1)/(T + 1), it holds
that Ti 6= T for any i in the ground state of the diamond chain.

Proof. The total Hamiltonian is divided asH = H ′ + hm, whereH ′ is the sum of
his with i 6= m. Let us take a state|90〉 whose wave function is given by the direct
product of the ground-state wave function ofH ′ and the singlet wave function ofTm.
Then 〈90|H |90〉 = E1(0) + E′, where E′ is the ground-state energy ofH ′. Let |9〉
be any state withTm = T > 1. Then 〈9|H |9〉 = 〈9|hm|9〉 + 〈9|H ′|9〉. Clearly
〈9|hm|9〉 > E1(T ) and 〈9|H ′|9〉 > E′; alsoE1(T ) > E1(0) for λ > λD(T ). Therefore
〈9|H |9〉 > 〈90|H |90〉 and |9〉 cannot be the ground state ofH . QED

SinceλD(T ) decreases withT from λD(1) = 2S + 1 to λD(2S) = 2, we obtain the
following result.

Proposition 1.For λ > 2S + 1, Ti = 0 for all i in the ground state. That is, all pairs of
T (1)

i andT (2)
i form singlet dimers.

In this state allSis are decoupled from other spins and behave as free spins. So we
call this state adimer–monomer(DM) state (figure 1(b)). Due to the free spins there is a
(2S + 1)N -fold degeneracy in the DM state.

For λ < 2S + 1, the DM state is not a ground state since one can lower the
energy by introducing an isolatedTi = 1 in the DM state. ForS = 1/2 the ground
state is composed ofTis with their magnitude 0 or 1. It is also true forS > 1 if
2S + 1 > λ > λD(2) = 2(2S + 1)/3. For example, let us assume the configuration of
{Ti} as {1010111011110110} in the chain with 16 diamonds. Since zeroTis decouple the
system ton-diamond clusters, the lowest energy for this configuration is simply given by
5E1(0) + 2E1 + E2 + E3 + E4, whereEn (n > 1) is the lowest energy of a cluster with
n diamonds for the configuration with allTis equal to 1. Taking account of anE1(0)

accompanying eachn-diamond cluster, the average energy of this cluster per diamond
measured from the DM state is given byen = (En − nE1(0))/(n + 1). If the minimum
value ofen occurs atn = nm, then the ground state in the thermodynamic limit (N → ∞)
is realized by a regular array ofnm-clusters with isolatedTi = 0s between them. A finiteN
may cause a mismatch of the cluster size. If the minimumen is realized at more than one
value ofn, then the ground state will have a macroscopic degeneracy. It seems plausible
that the ground state is the state with 1-diamond clusters on every other diamond forλ less
than but close to 2S +1, since a simple variational argument leads toEn > nE1 and usually
the difference between the two sides of the inequality is fairly large. The wave function of
this state is a direct product of those of four spin clusters (Ti = 1) and dimers (Ti = 0) as
shown in figure 1(c) [9]. Therefore we call this state atetramer–dimer(TD) state [11].

Proposition 2. There exists a finite regionλC1 < λ < 2S + 1 in which the TD state is
the ground state of the diamond chain in the thermodynamic limit.

Proof. We show thaten is the minimum only atn = 1 for a regionλC1 < λ < 2S + 1.
We denote the ground-state energy of a nearest-neighbour AF linear chain withn + 1 spins
of magnitudeS on odd sites andn spins of magnitude unity on even sites asẼn. Then
we haveEn − nE1(0) = Ẽn + nλ. Let us first assumeδ ≡ Ẽ2 − 2Ẽ1 > 0. If n is even,
the Hamiltonian forẼn is divided inton/2 sub-Hamiltonians, each equivalent to that for
Ẽ2. A variational argument gives an upper bound onẼn asnẼ1 + nδ/2 for evenn, and as
nẼ1 + (n − 1)δ/2 for oddn (> 3). Sincee1 = [λ − (2S + 1)]/2, a lower bound onen − e1

is given as(1/2)(n − 1)(n + 1)−1[λ − (2S + 1) + δ], which is positive forλ > 2S + 1 − δ

andn > 2. So we obtainλC1 6 2S + 1 − δ.
Next we assume thatδ = 0 and deduce a contradiction. We divide the Hamiltonian
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for Ẽ2 with five spins ash̃1 + h̃2, where each one is the Hamiltonian for three spins, two
of magnitudeS and one of magnitude unity in the middle. A simple variational argument
proves thatδ > 0 and the assumption implies that the ground state ofh̃1 + h̃2 is also the
ground state of̃h1. The Lieb–Mattis theorem [12] holds in this case and implies that the
total spin of the ground state is|3S − 2| and that forh̃1 is 2S − 1. The theorem also tells us
that the ground state with thez-component of the total spinSz

T contains all theSz-diagonal
states compatible withSz

T. The state|S, 0, S,−1, S − 1〉 is contained in the ground state
with Sz

T = 3S − 2. But the fact that the total spin of three spins on the left must be 2S − 1
eliminates the presence of the above state in the ground state and proves the failure of the
assumption. QED

Remark. We can show thatλC1 6 1 for S = 1/2. The proof will be given elsewhere
[13].

For eachS, we need numerical studies of finite-size systems to determine the precise
value ofλC1 and to find the ground-state structure forλ < λC1. The analysis forS = 1/2
and 1 will be given later.

For negative or positive but smallλ, we expect that the ground state is a ferrimagnetic
state corresponding to the complete ferrimagnetic ground state in the classical limit. For
λ 6 0 we have a general result.

Proposition 3.For λ 6 0 the ground state is ferrimagnetic, i.e. it has both ferromagnetic
and AF long-range order. For alli, Ti = 2S in the ground state.

Proof. We divide the total lattice into two sublattices, whereSis are on the A sublattice
and T

(j)

i s on the B sublattice. Forλ 6 0 the Lieb–Mattis theorem [12] implies that the
total spin of the ground state is given byNS; i.e. ferromagnetic long-range order (FLRO)
exists. The positive (or negative) definiteness of the ground-state wave function in terms
of the Sz-diagonal basis implies that the AFLRO is not less than the FLRO [14] and that
Ti = 2S for all i. QED

The ferrimagnetic ground-state phase is expected to extend to positiveλ and we
determine the phase boundary forS = 1/2 by numerical methods.

There is macroscopic degeneracy of the ground states atλ = 2S + 1. SinceE1(1) =
E1(0) at this value ofλ, any configuration of{Ti} with only Ti = 1 or 0 and satisfying
{Ti, Ti+1} 6= {1, 1} for any i gives ground states. We estimate the total degeneracyD by
using an asymptotic expansion for largeN as logD ≈ N log[(2S + 1)(

√
1 + 4/α + 1)/2]

whereα = (2S + 1)2/(4S − 1). The ratio of the residual to the total entropy is 0.424 for
S = 1/2 and decreases withS to 1/3 for S = ∞. Macroscopic degeneracy of the ground
state can occur at other phase boundaries.

Figure 2. The phase diagram forS = 1/2 in the parameter space ofλ (= J ′/J ).

Let us inspect the case ofS = 1/2. We estimate the minimum energy of a cluster
composed ofn unit diamonds where allTis are unity. For this purpose, we numerically
calculated the ground-state energyẼn of finite linear chains withn+ 1 spin one-halves and
n spin unities alternatingly aligned. By employing the Lanczos technique we obtained the
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energy up ton = 7. The data obtained for̃En fit nicely to an assumed asymptotic formula
Ẽn/(n + 1) ' ẽ∞ + a/(n + 1) with ẽ∞ = −1.454. We have estimated the values ofλ

where the state withn-diamond clusters gives the same energy with the TD state by using
the Ẽns obtained. The values are 0.763 012, 0.819 171, 0.847 024, 0.862 127, 0.871 321,
and 0.877 464 forn = 2, 3, . . . , 7. From the monotonically increasing behaviour of these
values, and the linear dependence ofen onλ we conclude that the TD phase changes directly
to the ferrimagnetic phase whereTi = 1 for all i. The criticalλ is estimated as 0.909 from
the value ofẽ∞. Thus we have completely determined the ground-state phase diagram of
the diamond chain forS = 1/2. It consists of three phases: the DM phase forλ > 2, the
TD phase for 0.909< λ < 2 and the ferrimagnetic phase forλ < 0.909 (figure 2).

In the case ofS = 1 we have obtained ground states with clusters larger than tetramers.
The ground state changes its character successively from the DM state to the TD state at
λ = 3, then to the heptamer (n = 2)–dimer state atλ = 2.660, to the state with 3-diamond
clusters atλ = 2.583 and suddenly to the state whereTi = 1 for all i (i.e. n = ∞) at
λ = 2.577. Therefore the ground-state phase diagram has at least six phases. The detail
will be reported elsewhere [13].

Above we have shown that the spin system on the diamond chain has several ground-
state phases with cluster structures [15]. There appear clusters larger than conventional
dimers. ForS = 1/2 the TD state is especially interesting since it is nonmagnetic. We
believe that these cluster structures are quantum manifestations of the classical floppiness.
The results might give some insight into the ground state of other floppy systems such as
the Kagoḿe antiferromagnet.
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